Estimation of AR and ARMA models by stochastic complexity
نویسندگان
چکیده
Abstract: In this paper the stochastic complexity criterion is applied to estimation of the order in AR and ARMA models. The power of the criterion for short strings is illustrated by simulations. It requires an integral of the square root of Fisher information, which is done by Monte Carlo technique. The stochastic complexity, which is the negative logarithm of the Normalized Maximum Likelihood universal density function, is given. Also, exact asymptotic formulas for the Fisher information matrix are derived.
منابع مشابه
Optimal Estimation of Multivariate ARMA Models
Autoregressive moving average (ARMA) models are a fundamental tool in time series analysis that offer intuitive modeling capability and efficient predictors. Unfortunately, the lack of globally optimal parameter estimation strategies for these models remains a problem: application studies often adopt the simpler autoregressive model that can be easily estimated by maximizing (a posteriori) like...
متن کاملParameter Estimation and Prediction of the Chirp and Stochastic Pulse Position Modulation Combined Signal
Recent work has proposed a certainty trend (CT) elimination technique employed for the auto-regressive/autoregressive and moving-average (AR/ARMA) model pulse position prediction. In this paper, we investigate the intra pulse parameter estimation and pulse position prediction of the chirp and stochastic pulse position modulation (CSPPM) combined signal. The quick dechirp method is adopted to th...
متن کاملMODELING THE STOCHASTIC BEHAVIOR OF THE FARS RIVERS
Historical records for rivers in Fars Province are inadequate in comparison with the design period of hydraulic structures. In this study, time series techniques are applied to the records of three Iranian rivers in the Fars Province in order to generate forecast values of the mean monthly river flows. The autoregressive models (AR), moving average models (MA) and autoregressive moving ave...
متن کاملOptimal Instrumental Variables Estimation for ARMA Models
In this paper a new class of Instrumental Variables estimators for linear processes and in particular ARMA models is developed. Previously, IV estimators based on lagged observations as instruments have been used to account for unmodelled MA(q) errors in the estimation of the AR parameters. Here it is shown that these IV methods can be used to improve efficiency of linear time series estimators...
متن کاملTwo Dimensional Arma Models and Parameter Adjustment to Estimate the Ctf of the Electron Microscope
A powerful parametric spectral estimation technique, 2D-ARMA (Auto Regressive Moving Average) modeling, has been applied to contrast transfer function (CTF) detection in electron microscopy. Parametric techniques such as AR (auto regressive) and ARMA models allow a more exact determination of the CTF than traditional methods based only on the Fourier Transform (FT). Previous works revealed that...
متن کامل